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Abstract

We review the progress in the study and implementation of the ideas described in Section
6.1 – Milestones – of [1].

1 Data set selection

We are required to select a data set on which to perform tests and validation of the algorithms
developed for the project.

The test images used for this project come from two sources. The first source is the University
of Southern California’s Signal & Image Processing Institute image database, whose first edition
was distributed in 1977. Many new images have been added since then. This database has been
widely used for image processing benchmarking.

However, it can be argued that they have outlived their usefulness given their size. For this
reason, a second set of images is selected from the The New Test Images database of the Image
Compression Benchmark website. In particular, we have selected the 8 bit gray images subset.

For the mid-year project presentation, only the first database is used given the current speed
of the code.

1. USC-SIPI Image Database, http://sipi.usc.edu/database/index.html
From which we selected, from Vol. 3 - Miscellaneous, the following

Filename Description Size Type
4.2.03 Mandrill (a.k.a Baboon) 512x512 pixels Color (24 bits/pixel)
4.2.04 Girl (Lena, or Lenna) 512x512 pixels Color (24 bits/pixel)
4.2.07 Peppers 512x512 pixels Color (24 bits/pixel)
5.3.01 Man 1024x1024 pixels Grayscale (8 bits/pixel)
5.3.02 Airport 1024x1024 pxls Grayscale (8 bits/pixel)

Note: The images are stored in the TIFF format.

2. Image Compression website at http://www.imagecompression.info/test images/, from which
we will select images contained in the gray8bit.zip file.

To summarize, we will draw images from the above two sources for our experiments.
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2 Software development

Recall that we are trying to solve

Af = b, (1)

where

A =


a0(σ0, γ0) a1(σ0, γ0) . . . aN2−1(σ0, γ0)
a0(σ1, γ1) a1(σ1, γ1) . . . aN2−1(σ1, γ1)

...
...

...
a0(σM−1, γM−1) a1(σM−1, γM−1) . . . aN2−1(σM−1, γM−1)

 , (2)

f is the vector of intensities in the spatial domain to be found, and b is a vector of spectral
values sampled at the corresponding (σi, γi) points in the spectral domain.

We solve this system of linear equations by solving

(A∗A)f = A∗b. (3)

Observe that we can set

A =


a0(σ0, γ0) a1(σ0, γ0) . . . aN2−1(σ0, γ0)
a0(σ1, γ1) a1(σ1, γ1) . . . aN2−1(σ1, γ1)

...
...

...
a0(σM−1, γM−1) a1(σM−1, γM−1) . . . aN2−1(σM−1, γM−1)

 =


vT

0

vT
1
...

vT
M−1

 , (4)

where the vector vT
i = (a0(σi, γi), a1(σi, γi), . . . , aN2−1(σi, γi)) is the i-th row of A. From this,

it is easy to see that

A∗A =


∑M−1

k=0 a0(σk, γk)a0(σk, γk) . . .
∑M−1

k=0 a0(σk, γk)aN2−1(σk, γk)
...

...∑M−1
k=0 aN2−1(σk, γk)a0(σk, γk) . . .

∑M−1
k=0 aN2−1(σk, γk)aN2−1(σk, γk)

 ,

=
M−1∑
k=0

 a0(σk, γk)a0(σk, γk) . . . a0(σk, γk)aN2−1(σk, γk)
...

...
aN2−1(σk, γk)a0(σk, γk) . . . aN2−1(σk, γk)aN2−1(σk, γk)

 ,

=
M−1∑
k=0


a0(σk, γk)
a1(σk, γk)

...
aN2−1(σk, γk)

 (a0(σk, γk), a1(σk, γk), . . . , aN2−1(σk, γk)),

=
M−1∑
k=0

vkv∗k.

That is, A∗A is the sum of M rank-1 updates. Also, it is easy to see that

A∗b =


∑M−1

k=0 a0(σk, γk)bk
...∑M−1

k=0 aN2−1(σk, γk)bk

 =
M−1∑
k=0

bkvk,

where bT = (b0, b1, . . . , bM−1). Hence, our current algorithm to compute A∗A and A∗b is:
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Initialize the variables

• AstarA is the N2 ×N2 zero matrix

• V is the 1×N2 zero vector

• B is the M × 1 vector with the given spectral data

• AstarB is the N2 × 1 zero vector

1. Let V = (a0(σ0, γ0), . . . , aN2−1(σ0, γ0))T (we’ll need a “for loop” of length N2 here)

2. AstarA = V V ∗

3. AstarB = b0V

4. For j = 1 to M − 1

• Let V = (a0(σj , γj), . . . , aN2−1(σj , γj))T (need a “for loop” of length N2 to make V )
• AstarA .= AstarA+ V V ∗

• AstarB .= AstarB + bjV

end

So, the algorithm requires memory for N2 ×N2 +M × 1 +N × 1 +N × 1 scalars.
The computational cost requires

• M “for loops” of length N2 to create the vectors vi

• A “for loop” of length M to create A∗A and A∗b

Once we obtain A∗A and A∗b, we use Matalb’s \ operator to solve the least squares problem
defined by equation 1. With this algorithm it is possible to establish that the theory in [1] is
actually capable of reconstructing images as shown in the next section.

3 Proof of concept

To validate the theory, we create synthetic data by choosing a set of points in the spectral
domain from which we sample the high resolution image to create its Fourier transform at those
points. The set of points is represented by a geometry file and the image is needed to compute
exactly, since we have an analytic formula for such purpose, its Fourier transform values. See
Figure 1.

Grayscale values
from image I
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Fourier file

f (!,")ImageHat

Figure 1: Creation of synthetic data from database image.

Once we have the synthetic data, we can use the algorithm described in the previous section
to generate A∗A and A∗b. We need, once again, the geometry file, and we use the Fourier file
generated in the previous step. See Figure 2.

Finally, we can use A∗A and A∗b and any adequate solver to obtain a reconstruction of
the initial image at a lower resolution, as determined by the number of points in the spectral
domain used to sample the Fourier transform of the original high resolution image. See Figure
3.
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Figure 2: Construct A∗A and A∗b.
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Figure 3: Reconstruct image using A∗A and A∗b.

4 Validation

To validate the algorithm, we carried out the steps described above for a subset of the images
from our data set, and we down sampled in the spatial domain the original high resolution
images –by doing simple 4-neighbor averaging–, and compared this with the results of the
reconstruction. One can see the clear resemblance of both procedures, however this does not
explain the differences found. This needs to be explored.
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Figure 4: Downsampled baboon to 32x32 pixels.

Figure 5: Reconstruction of baboon at same resolution by our algorithm.
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Figure 6: Downsampled Lena to 32x32 pixels.

Figure 7: Reconstruction of Lena at same resolution by our algorithm.
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Figure 8: Downsampled peppers to 32x32 pixels.

Figure 9: Reconstruction of peppers at same resolution by our algorithm.
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